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ABSTRACT:  Kinematics plays a very important role in the behavior of landslides in
discontinuous media. Discontinuous Deformation Analysis (DDA) is introduced as a technique
that allows a realistic incorporation of kinematics in routine analyses.  The advantage of using
DDA lies in the fact that the actual mode of failure does not have to be assumed a priori, and
displacements and velocities are computed as an integral part of the analysis. Analysis of the
Vaiont landslide is used to illustrate the importance of kinematics in the behavior of large
landslides to demonstrate the accuracy and capability of DDA.

RESUMO: La cinemática juega un papel muy importante en el comportamiento de
deslizamientosde tierra en medios discontinuous. El "Análisis de Deformación Discontinua"
(DDA) se introduce como una técnica que permite la incorporación realista de la cinemática en
análisis de rutina. La ventaja de usar DDA reside en el hecho que el modo de rotura real no se ha
de asumir a priori, y tanto desplazamientos como velocidades son calculados como parte integral
del análisis. El análisis del deslizamiento de Vaiont se usa para ilustrar la importancia de la
cinemática en el comportamiento de grandes despredimientos de tierras, y demostrar así la
exactitud y capacidades de DDA.

  
1. INTRODUCTION

Analysis of slope stability is one of the classic
problems in geotechnical engineering.  The
traditional approach is to use limit equilibrium
methods to evaluate the factor of safety against
failure (Duncan, 1996). In general, these
methods consider only force and moment
equilibria, and deformations are not accounted
for.  Thus, they are well suited for the analysis
of the potential failure initiation, but they are
poorly suited for the evaluation of actual
displacements.  Also, correct determination of
the mode of failure is essential to their
successful application.
More recently, continuum methods such as the
finite element method (Zienkiewicz, 1971 and
1977; Desai and Abel, 1972; Zienkiewicz and
Taylor, 1989 and 1991) have been applied to the
analysis of slope stability. Continuum methods

are not limited to simple computation of force
and moment equilibria, and can be used to
assess deformations.  Also, a specific mode of
failure, i.e. failure surface location and
geometry, does not have to be assumed.
However, these methods are generally limited to
the analysis of relatively small displacements.

In contrast, the behavior of discontinuous
media, such as jointed rock masses is governed
by discrete displacements along specific
discontinuities. Limit equilibrium solutions that
allow the assessment of the potential for failure
initiation are available for quite a few simple
situations, plane and wedge sliding, and
toppling, for instance (Hoek and Bray, 1981).
Kinematic methods, which consider the
influence of block geometry on the mode of
failure, are also available. These include
stereographic projection techniques, which are
commonly used to evaluate the stability of rock



slopes (Goodman, 1976), and block theory
(Goodman and Shi, 1985), which may also be
employed for this purpose.  In the finite element
context, various procedures have been employed
to account for the effects of discontinuities
(Duncan and Goodman, 1968; Goodman et al.,
1968; Wang and Voight, 1970; Ghaboussi et al.,
1973).  However, none of these methods are
really intended for modeling the behavior of a
system consisting of a large number of
individually deformable blocks.  This is the
realm of the discrete numerical methods, the
distinct element method (DEM) and
discontinuous deformation analysis (DDA).
The strength of discrete methods is their ability
to capture the dynamics, kinematics, and
deformability of a large number of individual
blocks.  DEM is a force-based method
developed in the early 1970’s (Cundall, 1971
and 1987).  DDA is a displacement-based
method developed during the 1980’s (Shi and
Goodman, 1984; Shi, 1988).  Both have been
applied successfully to analysis of slope stability
problems.

The purpose of this paper is to introduce
DDA as a tool for slope stability analysis of
discontinuous rock masses and to explore the
role of kinematics in the behavior of landslides.

2. DDA AS A SLOPE ANALYSIS TOOL

DDA has been successfully applied to a wide
variety of geotechnical problems, from
tunneling to toppling (Yeung, 1991). The more
influence the individual material discontinuities
have, the more appropriate the DDA model.
The importance of the discontinuities is dictated
by the scale of the problem.

DDA is a fully dynamic numerical method
that models the development of displacements
with time.  Consequently, it can be used to
predict the initiation of failure and to study the
subsequent kinematics of the failed mass.  The
mode of failure is one of the results of the
analysis, rather than one of the underlying
assumptions.  In addition, DDA reproduces the
actual displacements along discontinuities
within the sliding mass, as well as along the
failure surface.

DDA is not limited to analysis of initiation
of failure, and may be used to study the
behavior of the slope after the onset of motion.
This is one of the major strengths of the
method.

2.1 Theory of the DDA Method

DDA models a discontinuous material as a
system of individually deformable blocks that
move independently without interpenetration
(Shi, 1988 and 1993).  Its formulation is based
on a dynamic equilibrium that considers the
kinematics of individual blocks as well as
friction along the block interfaces.  The
displacements and deformations of the blocks
are the result of the accumulation of a number of
small increments, corresponding to small time
steps.  The transient formulation of the problem,
which is based on minimization of potential
energy, makes it possible to investigate the
progression of block movements with time.

The mechanical interactions of the blocks
and their surroundings are formulated in terms
of the displacement parameter set D.  These
interactions include various loads, block inertia
and elastic deformability, and displacement
constraints due to block contacts and boundary
conditions.  The minimum energy solution is
found by setting the partial derivatives of the
total potential energy function, the sum of the
individual energy contributions, equal to zero.
This results in a system of linear equations that
can be written in matrix form as [K][D] = [F].
For a system of n blocks:
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A complete description of the formulation of the
equations, including derivations of each of the
energy terms, can be found in Shi (1990 and
1993) and Shi and Goodman (1984 and 1985).

The original first-order formulation of DDA
incorporates a six-member displacement
parameter set D = [u0, v0, θ, εx, εy, γxy] for each
block that consists of the x- and y-translations
(u0, v0), rotation (θ), x- and y-components of
normal strain (εx, εy), and shear strain (γxy).
These parameters describe the displacement of
the center of mass of the block, from which the
corresponding locations of the block vertices
can be determined through the use of a first-
order displacement function:



u =  u  -  (y - y ) +  (x - x ) +
(y - y )
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where (u, v) are the displacements of a point
located at (x, y) within a block whose centroid is
located at (x0, y0).  This displacement function,
while extremely fast and efficient, uses a very
simple approximation for the displacements due
to rotation of the block.  If needed, the error
introduced by this simplification can be
corrected by incorporating higher order rotation
terms (MacLaughlin, 1997).

The kinematic constraints on the system of
blocks are imposed using the penalty method,
described as follows.  Contact detection is
performed in order to determine which block
vertices are in contact with edges and vertices of
other blocks.  Numerical penalties analogous to
stiff springs are applied at the contacts to
prevent interpenetration of the blocks.  Tension
or penetration at the contacts results in
expansion or contraction of these "springs",
which adds energy to the block system.  Thus,
the minimum energy solution is one with no
tension or penetration.  However, the forces on
each block are in equilibrium, so the energy of
the contact force between the blocks is balanced
by the penetration energy.  When the system
converges to an equilibrium state, there are very
small penetrations at each contact.  The energy
of the penetrations is then used to calculate the
contact forces, which are in turn used to
determine the frictional forces along the
interfaces between the blocks.  Fixed boundary
conditions are implemented in a manner
consistent with the penalty method formulation.

Solution of the system of equations is
iterative: contact springs are repeatedly added
and subtracted until each of the contacts
converges to a constant state.  The positions of
the block vertices are then updated according to
the prescribed displacement function.

2.2 Numerical Implementation

The computer implementation of DDA used in
this study is a set of programs originally written
by Shi (1993), as adapted for the MS-
Windows environment by MacLaughlin and
Sitar (1995).  In this implementation, each
discontinuity (joint) may have a different
friction angle, cohesion, and tensile strength.

The blocks are deformable, with constant stress
and strain within each block governed by the
Young’s modulus and Poisson’s ratio.

2.3 Numerical Accuracy

Yeung (1991) and MacLaughlin (1997)
extensively tested the accuracy of the DDA
code.  Their principal effort concentrated on
testing of static and dynamic response using a
variety of geometries and failure modes.  Here,
a simple example used by MacLaughlin (1997)
is shown to illustrate the ability of the method
to accurately predict large displacements and
velocities.

The problem consists of a single block
sliding down an inclined plane as depicted in
Figure 1a. When the friction angle is less than

a)

b)

Figure 1. a. Sliding block on a 30° slope; b.
Comparison of DDA and analytical results.

the slope angle, the block will accelerate down
the incline.  For a block initially at rest under
acceleration of gravity g, the analytical
solution for its displacement d as a function of
time t is:

( )d at g g t= = −1

2

1

2
2 2sin cos tanα α φ



Figure 1b shows a plot of the analytical
solution and the DDA results for a 30° slope
with three different values of φ (0°, 10°, and
20°).  The results compare very well and the
displacements computed using DDA are
within 1% of the theoretical solution.

3. INFLUENCE OF GEOMETRY AND
KINEMATICS

The importance of considering kinematics in the
analysis of slope stability is illustrated here first
by using DDA to model two relatively simple
cases: a compound, planar, and a circular-
shaped failure surfaces.

3.1  Compound Failure Surface

Figure 2 shows a slope with a compound
failure surface that is comprised of two
inclined planes, at 75° and 15°. For the case of
12 discontinuities, the slope fails by sliding
(Figure 2a) unless the friction angle along the
vertical discontinuities is low enough to allow
toppling to occur (Figure 2b). Kinematic
analysis also gives an indication of the variation
of the displacements across the slope, due to
differential movement between the blocks.
Sliding failure of the slope results in almost the
same amount of horizontal displacement at the
head scarp and at the toe.  However, the failure
plane under the scarp is much steeper than under
the toe, which means that the corresponding
vertical component is much larger at the scarp.
Thus, the total displacement near the head scarp
is much greater than the total displacement of
the toe, as shown in Figure 2.

Toppling failure (Figure 2b) involves
forward rotation of the blocks, which
accommodates relatively large displacements at
the head scarp with small displacements at the
toe.  Either mode of failure may result in a
displacement pattern consisting of a graben at
the head scarp with less discernible movement
at the toe, which is a fairly common field
observation in landslide investigations.

a)

b)

Figure 2.  Kinematics of failure along a
compound surface: a) pure sliding; b) sliding
and toppling.

3.2  Circular failure surface

Figure 3a shows a 2:1 (V:H) slope with a
circular failure surface, and divided into
vertical blocks (slices).  If this sliding mass is
analyzed as a single block, a friction angle of
38° is required to prevent failure. However,
toppling becomes a possible mode of failure
when the friction angle between the vertical
slices is sufficiently low and the friction angle
on the failure surface is high, as shown in
Figure 3b. In this case, the friction angle along
the failure surface, which is required to
maintain stability, is higher than that required
to prevent a rotational failure. This alternate
mode of failure would not be identified using a
traditional limit equilibrium analysis.
Consequently, the friction required for stability
might be severely underestimated and the
factor of safety overestimated.



a)

b)

Figure 3.  Kinematics of failure along a circular
failure surface:  a) rotation;  b) translation and
toppling.

4. VAIONT LANDSLIDE

We chose the Vaiont landslide, which occurred
in northern Italy in October 1963, to investigate
the role of kinematics in controlling the
movement of large landslides.  The slide took
place during the filling of the reservoir formed
by the construction of a large concrete arch dam
in the Vaiont River valley.  An enormous
amount of rock, on the order of 200-300 million
cubic meters, suddenly broke loose and slid
down into and across the reservoir, displacing
the water over the dam and causing substantial
loss of life downstream (Jaeger, 1979, Voight,
1979).

The rock mass, predominantly thick beds of
limestone separated by layers of clay, had been
moving slowly for several years prior to the
catastrophic failure.  A cross-section of the
pre-slide geometry is shown in Figure 4.  The
movement rates appeared to be highly
correlated with reservoir level and had been
observed for some time (Muller, 1964). The
cumulative displacement along the failure
plane prior to the main failure was on the order
of several meters or more (Muller, 1968)
before the main slide event.

Figure 4.  Gelogic section of Vaiont slide
(reproduced from Herndon and Patton, 1985).

A large number of two-dimensional limit
equilibrium analyses using methods of slices
were performed after the failure by various
investigators.  The friction angles required for
stability back-calculated from these analyses
range from φ = 17.5° to φ = 28°.  However,
strength test data on the clay material along the
failure surface show friction angles ranging
from 5° to 16°, with an average value around
12° (Hendron and Patton, 1985).  With φavailable

along the failure surface < φrequired for stability, the
slope should not have been stable even before
the filling of the reservoir.  Since the slope had
been at least marginally stable for quite some
time prior to failure, it may be concluded that
there are factors controlling the stability that are
not accounted for in the two-dimensional limit
equilibrium analyses.

Hendron and Patton (1985) were able to
resolve this discrepancy through the use of
three-dimensional stability calculations.
Sensitivity analysis performed as part of their
extensive two-dimensional stability studies
indicate that changes in the groundwater and
reservoir levels could have affected the factor of
safety of the slope by as much as 10 to 15%.
The value of the interslice friction angle could
change the factor of safety by approximately the
same amount.  In addition, the high velocity of
the landslide was attributed to pore pressures
generated by boiling water along the failure
surface.

Lo et al. (1971) conducted a limit
equilibrium analysis of the Vaiont slide, using
Janbu’s method for noncircular surfaces.  Their
model of the geometry of the slide consisted of
two wedges separated by a vertical discontinuity
located near the center of the slide mass. For
groundwater level corresponding to the height of
the water in the reservoir, they calculated φrequired

= 13°.



In our DDA analyses we used a simplified
cross section of Hendron and Patton (1985)
which we subdivided into different number of
blocks (Figure 5).  In the simplest case we
assumed that the mass behaved as a single
block.  The results indicate that under
completely dry conditions, a slide mass
represented by a single block would require a
friction angle of only 8° for stability.  However,
if the mass is divided by a single vertical
discontinuity into two blocks (Figure 5a) the
required friction angle along the slide plane
varies between 8° and 14°, depending on the
interblock friction and the position of the
vertical discontinuity (MacLaughlin, 1997).
The DDA result for a configuration very similar
to that used by Lo et al. (1971) was 14°, which
compares very well with their result.

a)

b)

c)

Figure 5.  Simplified section through the Vaiont
slide used in DDA: a) 2 blocks; b) 9 blocks; c)
105 blocks.

The position of the vertical discontinuity
between the blocks also significantly affects the
results and computed φrequired varies from 8° to 14°
(MacLaughlin, 1997).  The lowest values of
φrequired correspond to a vertical discontinuity
located near the toe and crest of the slide where
the resisting/driving force ratio is highest. The
highest values correspond to a vertical
discontinuity located near the middle of the slide
(near the break in the slope of the failure
surface), where the resisting/driving force ratio
is minimized.  Chowdhury, in an analysis of the
Vaiont slide using a limit equilibrium method
that models progressive failure, produced results
with an almost identical trend (Chowdhury,
1978).

The 9-block sliding mass in Figure 5b
corresponds to one of the configurations used in
Hendron and Patton’s two-dimensional limit
equilibrium analyses.  The value of limiting
friction angle required for stability computed
using DDA, φrequired = 15°, compares very well
with φrequired = 14.9° calculated by Hendron and
Patton.  Additional DDA analyses indicate that
the φrequired increases with increasing number of
slices, particularly when the slices are
concentrated near the middle of the slide mass,
near the change in the slope of the failure
surface.  The results are summarized in Table 1.
Eventually, there are enough discontinuities
concentrated around the slope break that most of
the kinematic constraints have effectively been
removed and adding more discontinuities does
not affect the stability of the slope.  The φrequired

for stability at this point corresponds to that
calculated with the limit equilibrium methods of
slices.  However, the computed velocity of the
slide mass is very much afftected by the number
of blocks, as will be discussed next.

Table 1.  φrequired as a function of the number of
blocks in DDA.

Number of
blocks

φrequired

1 7°
2 13°
3 15°
9 18°
23 15°
105 16°



The behavior observed in the DDA
analyses is consistent with the “discontinuous
flow”  model proposed by Jaeger (1968).  It is
essentially an extension of the progressive
failure concept, with the unstable upper portion
of the slide creeping gradually down slope,
imparting greater and greater forces on the
lower stable portion of the slide.  Eventually, the
forces increase to the point where they are high
enough to cause sudden rupture within the lower
stable zone.  Jaeger cites evidence of a
nonuniform zone of deterioration and physical
weakening which separated the upper sliding
mass from the lower.  Borehole displacement
data in fact indicate that the upper block was
indeed moving as a more or less intact block of
material.  The manifestation of the instability of
the upper block was a continuous downslope
creep, with a total cumulative displacement of
0.5 m to 2.5 m.  The seismic velocities of the
material, originally around 6000 m/s, a typical
value for intact rock, had dropped to less than
3000 m/s in a very short time, indicating an
increasing level of fracturing within the lower
mass, most likely associated with some dilation.
Seismic records also provide evidence that a
brittle fracture occurred within the rock mass
immediately prior to the main slide event.  Thus,
there is a considerable amount of evidence
indicating that the discontinuous flow model of
the behavior of the slide is plausible.
Furthermore, if internal deformation and
fracturing resulted in formation of major
discontinuities in the middle of the sliding mass,
the slide would have broken up into multiple
pieces. This scenario is consistent with typical
behavior of large landslides.

A very interesting aspect of the Vaiont slide
is the extremely high rate of movement. The
sliding mass moved a total of over 400 m
(including a relatively large upward vertical
component of displacement of 150 m) in less
than 60 seconds.  Previously published estimates
of maximum velocity, based on a variety of
observations ranging from measurements of the
final configuration of the sliding mass to
distance traveled versus duration to wave
heights in the reservoir, range from 20 to 50 m/s
(Hendron and Patton, 1985).  These values are
much higher than had been anticipated.
Velocity estimates prior to failure, based on
physical model studies as well as experience
with other slides having similar geometries,
were an order of magnitude lower.  Various
hypotheses have been developed to explain the

anomalously high velocities, including reduction
of shear strength on the failure surface and heat-
generated pore pressure.

Since DDA is a fully dynamic method, it
can be used to calculate the velocity of the
sliding mass as a function of time, as well as the
maximum velocity achieved during the slide.
We analyzed the different block configurations
in order to quantify the effect of block size on
the velocity calculations, including the 9-block
configuration of Hendron and Patton (1985)
shown in Figure 5b.  In the DDA models, the
friction angle for dry conditions on the failure
surface was assumed to be φavailable = 12°. The
results obtained from the different configuration
by DDA are presented in Figure 6 and are
compared to an analytical solution, which
accounts for strength loss due to pore pressure
generation caused by frictional heating of the
sliding masses (Hendron and Patton, 1985).  As
can be seen, the maximum velocity achieved
increases with the number of blocks.  The
closest agreement between the analytical
solution and DDA is obtained with a model
consisting of 105 blocks (Figure 5c).

Figure 6.  Velocity as a function of time for
different block configurations as compared to an
analytical solution.

The most significant difference in the
results is in the shape of the curves, since the
DDA code currently does not account for any
changes in strength with displacement, resulting
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in constant acceleration.  In contrast, the model
used by Hendron and Patton (1985) does
incorporate strength loss and displays increasing
acceleration.  Overall, however, the results show
that kinematics has a very significant influence
on the predicted velocity of sliding.  In the case
of the Vaiont example the influence of
kinematics tends to overshadow the influence of
variations in shear strength along the failure
plane.  This result suggests, that  investigations
of slides in blocky materials should be place as
much emphasis on the investigation of the
geometry of the landslide blocks and their
interaction, as is spent on the determination of
shear strength characteristics.

5. CONCLUSIONS

Kinematics plays a very important role in the
behavior of landslides in discontinuous media.
New techniques, such as DDA, allow a
realistic incorporation of kinematics in routine
analyses.  The advantage of using DDA lies in
the fact that the actual mode of failure does not
have to be assumed a priori. As shown using
the Vaiont landslide example, the method is
accurate, and it also allows the computation of
displacements and velocities, which are not
easily obtained using traditional limit
equilibrium methods.
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